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Introduction

P. falciparum malaria is the pre-eminent tropical parasitic infec-
tion, causing approximately 300 million infections and around 
800,000 deaths per year (World Malaria Report, WHO, 2010). 
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An effective vaccine against P. falciparum malaria remains a 
global health priority. Blood-stage vaccines are an important 
component of this effort, with some indications of recent 
progress. However only a fraction of potential blood-stage 
antigens have been tested, highlighting a critical need for 
efficient down-selection strategies. Functional in vitro assays 
such as the growth/invasion inhibition assays (GIA) are widely 
used, but it is unclear whether GIA activity correlates with 
protection or predicts vaccine efficacy. While preliminary 
data in controlled human malaria infection (CHMI) studies 
indicate a possible association between in vitro and in vivo 
parasite growth rates, there have been conflicting results 
of immunoepidemiology studies, where associations with 
exposure rather than protection have been observed. In 
addition, GIA-interfering antibodies in vaccinated individuals 
from endemic regions may limit assay sensitivity in heavily 
malaria-exposed populations. More work is needed to establish 
the utility of GIA for blood-stage vaccine development.
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Effective control strategies such as insecticide-treated bed-nets 
(ITNs) and artemesinin-combination therapies (ACT) have con-
tributed to considerable and impressive reductions in malaria 
incidence in some countries,1 prompting renewed calls for malaria 
eradication.2 Yet the evolution of parasite resistance to drugs3 and 
vector resistance to insecticides4 continues to challenge control 
efforts, and the development of an effective malaria vaccine is a 
global public health priority.5,6

While a partially effective vaccine is aiming for licensure in 
2015,7 a highly effective vaccine against P. falciparum malaria 
remains elusive. There are many challenges to overcome,8,9 
including considerable parasite genetic diversity, a lack of suitable 
animal models, and an incomplete understanding of the effector 
mechanisms that determine natural immunity in humans.10 A 
variety of vaccine strategies targeting all stages of the parasite life-
cycle have been pursued, including recombinant protein-in-adju-
vant preparations,11 replication-deficient viral vectors encoding 
malaria antigens12 and attenuated whole parasites.13 Fewer than 
0.5% of malaria proteins have been explored as potential can-
didate vaccine antigens,9 but the presence of naturally acquired 
immunity (in contrast to other important pathogens such as 
HIV), together with evidence of experimentally-induced immu-
nity in humans,14 offers the promise that better understanding 
of protective immune effector mechanisms might accelerate the 
vaccine development process.9

With so many potential vaccine candidates and platforms, 
robust down-selection strategies are required for candidate 
antigens. In the case of vaccines to the asexual blood-stage, 
the most commonly employed strategy for candidate antigen 
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host, substantial variation of surface antigen expression may 
enable evasion of host immunity.24

A few BS vaccine candidates have demonstrated limited 
evidence of strain-specific efficacy,25-28 however the most effec-
tive malaria vaccine to date has been the protein-adjuvant anti-
sporozoite (pre-erythrocytic stage) vaccine RTS,S, which is the 
only candidate malaria vaccine to have progressed to phase III 
efficacy trials.7 Yet RTS,S is only partially effective (30–50% 
efficacy against clinical malaria in phase IIb studies,29-32 50% in 
an interim analysis of the phase III trial7) and recent data sug-
gest that by reducing the frequency of exposure to blood stage 
parasites, RTS,S may actually increase the probability of clinical 
malaria (vs. asymptomatic parasitemia) in those who are subse-
quently infected.33 This increased probability of clinical disease 
is outweighed by the vaccine-induced reductions in exposure that 
reduce the incidence of clinical malaria overall.33 Nevertheless, 
the impact of changing transmission patterns on disease sever-
ity is uncertain,34 and the desirability of a complementary BS 
vaccine to mop-up leaky pre-erythrocytic immunity, and poten-
tially deal with epidemic transmission patterns, is generally 
acknowledged.8,9,15

Antibodies are central to BS immunity. The role of antibod-
ies was first identified by passive transfer experiments in rhesus 
macaques in 1937.35 Seminal experiments by Cohen and col-
leagues established the protective role of antibody against clinical 
disease by transferring purified IgG from semi-immune adults 
to young children with acute malaria.36 Additional immune 
responses may also be involved in BS immunity.10 Th1 CD4+ 
effector memory responses to BS parasites37,38 are associated with 
long-term protection after repeat sporozoite exposure under drug 
treatment, although the precise mechanisms of this protection 
are unclear. A previous study had also proposed T-cell mediated 
protection resulted from repeated exposure to ultra-low dose BS 
parasite inoculation followed by drug treatment,39 but these pro-
tection data were confounded by residual antimalarial activity at 
the final challenge.40 

In Vitro Growth Inhibition Assay (GIA).

The activity of immune sera41 or purified immunoglobulin42-44 in 
parasite growth inhibition assays (GIA) has been recognized for 
many years. Cohen and colleagues published the first report of 
the in vitro growth inhibitory activity of P. knowlesi antibody in 
1969.45 Antibodies with GIA activity against P. falciparum can be 
effectively induced by immunization in humans using protein-
in-adjuvant and vectored subunit vaccine approaches (reviewed 
in refs. 15 and 16), although the magnitude of vaccine-induced 
GIA responses are dependent on the population group immu-
nized46 and the vaccine antigen.47 For the best-studied BS anti-
gens AMA-1 and MSP-1, significant antigen-specific variation is 
observed in the GIA response, with AMA-1 vaccines providing 
greater GIA activity than MSP-1

42
 based vaccines.47 The vaccine-

induced GIA response is also highly parasite strain-dependent, 
particularly for AMA-1,48 which mirrors the strain-specificity of 
the AMA-1 vaccine-induced protective immunity in vivo.25 In 

down-selection has been the detection of antibody with in vitro 
activity in growth inhibition assays (GIA).15,16 In primate chal-
lenge models induced antibodies with high levels of GIA activity 
against blood-stage antigens such as apical membrane antigen-1 
(AMA-1) and merozoite surface protein-1 (MSP-1) have been 
associated with protection against lethal challenge.17,18 But can 
the in vitro GIA activity of induced antibodies predict blood-
stage vaccine efficacy in humans? Here we attempt to address 
this question using data from published immunoepidemiologi-
cal, CHMI and field efficacy studies.

Parasite Growth and Invasion

The malaria lifecycle is complex, involving several stages. Infected 
Anopheles mosquitoes inject sporozoites of P. falciparum present 
in their salivary glands when taking a blood meal. These sporo-
zoites migrate to and invade liver cells, setting up the liver (or 
pre-erythrocytic) stage of infection. After around seven days each 
infected liver cell releases approximately 30,000 merozoites into 
the bloodstream. These merozoites invade and replicate asexu-
ally within red blood cells (erythrocytes), leading to an exponen-
tial increase in parasites in the blood (parasitemia). This is the 
blood-stage of infection—the only stage at which clinical disease 
occurs. Later in blood-stage replication a few parasites develop 
into male and female gametocytes, and these in turn may be 
taken up by feeding mosquitoes, leading to sexual reproduction 
in the mosquito that produces a new generation of sporozoites.

Invasion of erythrocytes by merozoites is rapid19 and involves 
three main phases: (1) attachment, (2) apical re-orientation and 
(3) invasion.20 Various merozoite antigens are involved in these 
processes; such as the merozoite surface proteins (MSPs, par-
ticularly MSP-1) in attachment; the apical membrane antigen 1 
(AMA-1) in re-orientation; and two families termed the eryth-
rocyte binding antigens (EBAs) and the Rh proteins in inva-
sion.21 Some of these proteins are leading BS vaccine targets (e.g., 
AMA-1 and MSP-1), although many more are untested.15

Blood-Stage Immunity

Although the precise immunological mechanisms underpin-
ning malaria immunity are unresolved, its natural history is well 
established.22 Immunity develops over time with repeated expo-
sure to the malaria parasite (providing death does not occur), first 
to severe disease in infants, then to clinical disease in children 
and young adults. Immunity is rarely “sterilizing” (i.e., asymp-
tomatic parasitemia is often observed in adults), suggesting 
that naturally acquired immunity occurs mainly at the blood-
stage.10 Attempting to accelerate and improve upon this naturally 
acquired immunity is the major goal of blood-stage vaccines.15,16 
Malaria immunity is maintained by continued exposure to para-
site antigens, and the ideal BS vaccine will be similarly boosted 
by, but will not require, natural exposure.16 Studies of experimen-
tally induced human malaria (used as a therapy for neurosyphilis 
in the pre-antibiotic era) have demonstrated that the immunity 
that develops is both strain and species specific.23 Even in a single 
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application in field vaccine studies is that GIA often requires a 
prohibitive quantity of sera considering the bleed volumes per-
mitted in most infant studies in endemic regions, and moves to 
down-scale assays are welcomed.51

In addition to growth or invasion inhibition assays, promis-
ing assays to measure additional Fc receptor (FcR) dependent 
functional antibody activities have been developed. A limited 
number of field studies have identified that clinical protection or 
parasitemia correlated with antibody parasite inhibitor activity in 
the presence of monocytes64,65 or neutrophils,66 whereas antibody 
alone did not. Although highly promising as a functional read-
out,67 such assays are technically challenging66-68 and have not 
been widely replicated by other groups, therefore their utility to 
the broader vaccine development field has been limited to date. 
Another approach takes advantage of transgenic murine para-
site lines expressing P. falciparum antigens and transgenic mice 
expressing human FcRs to examine FcR-mediated effector func-
tions in detail.69 Together these functional assays are likely to 
contribute significantly to future vaccine development efforts.16 
However, we focus here on the most widely used and repeat-
able functional assays in blood-stage vaccine development, the 
growth/invasion inhibition assays (GIA).

Acquisition of Inhibitory Antibodies

Before examining the utility of GIA in BS vaccine develop-
ment, it is important to understand more about the kinetics of 
inhibitory antibody development. Although the well-standard-
ized controlled human malaria infection (CHMI) models in 
malaria-naïve volunteers provide an appropriate framework to 
explore such questions, no CHMI studies have reported GIA 
post-challenge, meaning it is unclear whether a single episode of 
malaria infection during CHMI results in detectable functional 
antibody in GIA.26,27,38,39,62,70-74 In macaques challenged with P. 
knowlesi, substantial increases in GIA activity have been noted 
post-challenge.75

Uncertainty also surrounds the acquisition of inhibitory anti-
bodies after naturally acquired infection. Eisen and colleagues 
identified that invasion inhibitory antibodies developed rapidly 
in non-immune travelers who had recently acquired P. falci-
parum,76 yet in transmigrants the development of MSP-1

19
 inhibi-

tory antibodies required two or more infections.77 Incremental 
boosting of the memory B cell compartment by repeated infec-
tion has been observed in individuals in malaria transmission set-
tings,78 but GIA activity appears to be acquired at an early age 
in high transmission settings,79 does not appear to be boosted 
by repeated infections and in fact often decreases with age (see  
Table 1). Using sera from semi-immune Sudanese adults, inhi-
bition of intraerythrocytic parasite growth, but not invasion 
activity, was temporally associated with transmission.50 In addi-
tion, an increase in autologous parasite inhibition activity was 
observed over a two-week period in 57% of infected individuals 
in Burkina Faso.80 A similar kinetic of increased invasion inhibi-
tion activity was observed one month after infection in Vietnam, 
but by contrast, MSP-1

19
 specific invasion activity fell rapidly, 

and the end of the transmission season was also associated with 

addition, vaccine-induced increases in GIA responses in adults in 
endemic regions appear less pronounced.46

The development of the growth inhibition assay (GIA) is 
indebted to the in vitro P. falciparum culture methods developed 
by Tragar and Jensen.49 Various GIA techniques have been used to 
qualitatively assess antibody-mediated effects on parasite growth 
and/or invasion in vitro, from labor-intensive microscopy42-44,50 
and high-throughput biochemical assays of parasite prolifera-
tion and viability,48,51,52 to the use of chimeric murine parasites53 
and GFP-expressing parasites in flow cytometric assays.54,55 The 
recent development of isolation and culture methods for P. falci-
parum merozoites has also allowed the development of a highly 
sensitive merozoite invasion assay.19

It is important to recognize that these various functional 
assays measure distinct components of the antibody response.52 
Most microscopy and flow cytometry assays measure growth as 
a function of invasion capacity (in other words they are invasion 
inhibition assays—IIA—but confusingly this term is often used 
synonymously with GIA). These assays do not measure parasite 
viability, and some cannot distinguish dead from live parasites. 
On the other hand, viability assays (e.g., biochemical measure-
ment of parasite lactate dehydrogenase (pLDH)) measure intra-
cellular growth characteristics as well as the invasion capacity of 
the parasite.52

These different methodologies produce functional readouts 
that do appear to correlate,52,56 although head-to-head compari-
sons of different methods are infrequently employed in clini-
cal trials.27,56 Standardization of the functional assay chosen is 
extremely important, since the read-outs can be influenced by 
methodological factors such as the use of whole sera or purified 
immunoglobulin, methods of immunoglobulin purification, 
the use of dialysis to remove potential contaminating antima-
larial drugs, the number of growth cycles and heat-inactivation 
of complement.52,55,57-61 Furthermore, GIA activity is rarely nor-
malized to the concentration of purified immunoglobulin or the 
sera dilution, and this creates further heterogeneity which limits 
comparability between studies: for example, AMA-1 vaccine-
induced GIA was quoted as 63% in one study using 10 mg/mL 
of purified IgG,62 and 70–77% in another using 4 mg/mL of 
purified IgG.27 Therefore headline GIA activity may be mislead-
ing without appreciating the antibody concentration tested, yet 
this is rarely reported prominently. Although a somewhat more 
labor intensive approach, titration of sera/immunoglobulin and 
presentation of the 50% inhibitory concentration (IC

50
),63 would 

greatly improve inter-study comparability. Further moves to stan-
dardize the GIA have been taken, including the establishment 
of the PATH-Malaria Vaccine Initiative funded GIA reference 
center at the NIH in 2004, yet various iterations of the GIA con-
tinue to be employed in clinical studies. For example, in a recent 
clinical vaccine and challenge study, there was a 2–3-fold differ-
ence in the magnitude of GIA activity when the same samples 
were tested by different methodologies, although the outputs 
were well correlated.27 We suggest that vaccine developers report-
ing GIA should endeavor to report in parallel results on their 
samples from the GIA reference center, to improve comparability 
of outcomes for the field. A potential limiting factor to its wide 
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a significant impact on the data are dependent on the intensity 
of transmission and other important confounding factors such as 
the use of ITNs.90 Misclassification of unexposed individuals as 
“protected” will significantly bias interpretation of the immune 
response measured.33,90 This is a particular problem for studies 
using GIA since the acquisition of growth inhibitory antibodies 
appears to be linked to exposure (see Table 1). The use of more 
clinically relevant endpoints such as protection against clini-
cal disease (defined as parasitemia with clinical symptoms vs. 
asymptomatic parasitemia) may be more informative. However, 
the definition of clinical disease is also subject to inter-study vari-
ability and a lack of agreed standardization.82

Additional heterogeneity is introduced by the use of differ-
ent assays, which as discussed above, measure distinct aspects of 
the functional antibody response; however Dent and colleagues 
used three different GIA methodologies and found similar asso-
ciations.68 Moreover, even with very similar assays, there can be 
conflicting data from different populations,81,86 suggesting the 
presence of additional confounding effects of transmission inten-
sity and/or host genetic variation.

There is also significant correlation between age and protec-
tion against malaria,91 and to account for this prospective studies 
should be performed in well-defined age groups and analysis cor-
rected for age.68,88 Interestingly, it appears from most prospec-
tive studies that GIA activity is present in young children and 
then reduces with increasing age,33,68,79,84,87 in contrast to the age-
related progression of clinical immunity. This could suggest that 
GIA activity is unrelated to clinical disease immunity, although 
some authors have suggested a possible contribution to early pro-
tection against severe disease.79 This seems unlikely, since severe 
disease immunity is generally acquired after one or two infections 

Table 1. GIA/IIA field studies

GIA, Growth inhibition assay; IIA, invasion inhibition assay; PcMSP-119/PyMSP-119 (chimeric P. falciparum expressing P. chabaudi or P. yoelii merozoite 
surface protein-119), pLDH, parasite lactate dehydrogenase activity; 3H, Tritium radiometric viability assay

a fall in MSP-1
19

 invasion inhibition activity.81 Overall the kinetics 
of acquisition of GIA activity suggest an association with parasite 
exposure, although this does not necessarily imply a protective role.

Immunoepidemiology Studies

Many prospective studies have examined the association between 
protection against malaria infection or clinical disease and anti-
bodies to merozoite surface proteins, and this topic has been sub-
ject to a recent comprehensive systematic review in reference 82. 
Despite considerable heterogeneity in study design and clinical 
endpoints there is evidence for a positive relationship between 
the levels of antibodies (measured by ELISA) to several leading 
blood-stage malaria vaccine candidate antigens [including AMA-
1, MSP-1

19
, MSP-3 and glutamate-rich protein (GLURP)] and 

protection in malaria-exposed populations.82

Simply measuring the magnitude of immune responses yields 
no information on the qualitative nature of the induced antibod-
ies. Unfortunately, far fewer studies have focused on functional 
characteristics of the antibody response and whether these cor-
relate with protection.33,56,68,79-81,83-88 Those studies published to 
date are summarized in Table 1.

It can be seen from Table 1 that the conclusions of these stud-
ies in terms of the role of GIA activity in protection are highly 
conflicting. While some studies suggest a protective role for 
GIA activity,68,83,86,88 most do not.33,56,79,81,84,85,87 These conflict-
ing data have several possible origins. Cross-sectional studies 
are less informative than prospective studies. In addition, the 
choice of trial endpoints is influential. A problem common to 
all field studies is the difficulty in differentiating between the 
absence of malaria exposure and “protection.”89 Whether this has 
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substantial insights into the major components of protective 
immunity. This also applies to CHMI studies.

Controlled Human Malaria Infections (CHMI)

CHMI by either sporozoite or blood-stage inoculation of 
healthy malaria-naïve volunteers can accelerate candidate 
vaccine development by providing rapid and robust efficacy 
readouts.5,96 These studies are performed in a small number 
of centers worldwide.97 Whether efficacy in CHMI predicts 
field efficacy in target populations remains an open question, 
since so few candidates have demonstrated convincing efficacy 
in CHMIs, but the indications are that CHMI can accurately 
down-select potential candidates, since very few phase IIb 
studies have detected efficacy in the absence of an efficacy sig-
nal in a phase IIa CHMI5 (the only possible exception is the 
Combination B vaccine28,71). Pre-erythrocytic vaccine efficacy 
readouts are unambiguous (i.e., sterilizing protection or delays 
to patency), although mathematical modeling of parasitemia 
(measured by highly-sensitive quantitative polymerase chain 
reaction assays) also detects important reductions in liver-to-
blood inocula.98 Blood-stage vaccine CHMI efficacy readouts 
include delays to microscopic patency by blood-film micros-
copy, and/or reductions of the in vivo parasite multiplication 
rate.70,99,100 Relatively few blood-stage vaccine candidates have 
been tested by CHMI96 (see Table 2), although more stud-
ies have been performed recently in reference 27 and 62, (and 
clinicaltrials.gov/NCT01142765) as the utility of the CHMI 
model is increasingly recognized.97 Until recently the BS vac-
cine goal-posts in CHMI had not been experimentally defined. 
PMR in semi-immune individuals appears to be considerably 
lower than in malaria-naïve individuals,101 and is also consider-
ably lower than has been achieved in any vaccine CMHI trial 
to date26,27,62,71 implying that the first generation of BS vaccines 
was not sufficiently immunogenic to impact on in vivo PMR. 
PMR by CHMI is a more clinically relevant study endpoint 
than in vitro GIA70 and is most appropriate to determine which 
candidates to take to the field,97 but CHMI studies may be 
impractical in some settings due to logistics, regulatory hur-
dles and prohibitive costs.15 In addition, by CHMI no consis-
tent association has emerged between significant reductions in 
PMR and clinical indicators of BS protection such as delays 
in pre-patent period.26,27,62,71 Robust CHMI models (e.g., those 
involving twice-daily qPCR monitoring of blood-stage parasit-
emia) should be better capable of predicting field efficacy for 
BS vaccines as more immunogenic BS vaccine candidates are 
developed.

If GIA activity is an important mechanism through which 
antibodies mediate BS protection in vivo, one might expect an 
association between in vitro GIA and in vivo PMR. This hypoth-
esis has only been tested in a single CHMI study,62 in which a 
significant positive correlation was observed in a small group of 
AMA-1 vaccinated malaria-naïve volunteers despite no effects 
on pre-patent period or overall PMR in the vaccine group. This 
finding needs to be replicated in larger cohorts, but does indicate 
that in vitro GIA may be a useful surrogate for in vivo PMR in 

and asymptomatic high-density parasitemia is very common in 
young children in endemic areas. On the other hand, malaria 
antibodies that interfere with vaccine-induced GIA activity are 
found in adults58 and children in endemic areas,92 and are not 
found in malaria-naïve individuals.58 This suggests that GIA 
“interfering” antibodies may also develop with malaria exposure. 
The acquisition of these interfering antibodies could partially 
explain the lack of a positive association between GIA and age 
or protection. The implications of such interfering antibodies are 
not yet clear, but these data imply that the sensitivity of GIA 
may be reduced significantly in certain groups,46 and raise con-
cerns about the use of GIA as a marker of BS vaccine responses in 
malaria-experienced populations.

These observations highlight the importance of the fine speci-
ficity of the antibody response. For the leading vaccine candidates 
(MSP-1 and AMA-1), evidence suggests that antibodies to confor-
mational epitopes are critical in mediating GIA activity (reviewed 
in refs. 11 and 93). Monoclonal antibodies (mAb) with GIA 
activity against AMA-1 and MSP-1 have been shown in struc-
tural studies to inhibit proteolytic processing of the precursor pro-
teins (e.g., 88-kDa AMA1/MSP1

42
), a step required for merozoite 

invasion, through binding to discontinuous (conformational) 
epitopes.11,93 Individuals with MSP1

19
 antibodies displaying cross-

competition against the inhibitory monoclonal antibody (mAb) 
12.10 had significantly lower parasite densities in cross-sectional 
studies.85,94 However, the “interfering” antibodies described above 
can, through steric inhibition, block the binding of growth/inva-
sion inhibitory antibodies and therefore interfere with this func-
tional activity. Binding affinity, an additional aspect of the fine 
specificity of the antibody response, may influence the functional 
phenotype of the antibody, with recent suggestions that higher 
affinity antibodies may be associated with inhibitory activity, 
while lower affinity antibodies generate ADCI.11 Finally, as men-
tioned briefly before, the specificity of protective antibody can be 
influenced by the degree of parasite polymorphism. In pre-clinical 
studies significant diversity of the target epitopes in AMA-1 and 
MSP-1 attenuates the response against heterologous (non-vaccine) 
strains.95 The clinical importance of this target antigen polymor-
phism was recently illustrated in a phase IIb study of an AMA-1 
vaccine based on recombinant 3D7 strain AMA-1, where 3D7 
strain-specific protective effects were observed in immunized 
individuals, but no protection was conferred against heterologous 
(non-vaccine) strains.25 A similar pattern was observed in the phase 
IIb field study of the Combination B vaccine.28 Therefore parasite 
antigen polymorphism may significantly influence the association 
(or lack thereof) between GIA activity and clinical protection in 
observational studies. Moreover, it should be remembered that 
GIA is often tested against well-characterized laboratory strains 
in vitro that may not reflect the parasite strains circulating in the 
community, further reducing the likelihood of a relationship (if 
present) being observed.

With such a complex pathogen as P. falciparum it seems 
unlikely that a single immune mediator will ever account entirely 
for immunological protection.9 Assessment of a greater breadth 
of functional immune responses, combined with integrative sys-
tems biology approaches, will likely be required to achieve more 
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Field Efficacy Studies

In part due to prohibitive blood-draw limits during phase IIb 
studies in young children and infants, GIA has not generally been 
performed in field efficacy studies of BS vaccine candidates to 
date,25,28,102,103 meaning that prospective correlations with efficacy 
cannot be assessed. In one pediatric phase IIb trial of an AMA-1 
vaccine with Alhydrogel,103 a modest vaccine-induced increase in 
GIA activity was observed in children without pre-existing GIA 
activity (< 20%),46 but GIA did not correlate with parasitemia,46 
and there was no field efficacy with this vaccine.103 In order to 
understand more about the value of functional antibody assays 
in predicting efficacy (or a lack thereof), approaches to facilitate 
GIA in field efficacy studies should be explored.51,54 Feedback of 
such data will inform future vaccine design.97

Closing Remarks

Although BS vaccine development has been largely disappoint-
ing to date, there are several reasons for cautious optimism. 
Immunogenicity of some vaccine platforms, particularly viral-
vectored vaccines and prime-boost regimens, is improving sig-
nificantly,12,104 and many potential candidate antigens remain 
to be tested.9 For example, a recent promising study of vectored 
vaccines against the conserved candidate antigen Rh5,105 suggests 
that many untested antigens could be effective vaccine targets. 
Indications of strain-specific efficacy with some monovalent 
AMA-1 vaccines are also promising,25 but more work is required 
to understand how best to down-select the many potential BS 
vaccine candidates in the pipeline. In vitro functional antibody 
assays may be important to this effort due to their scalable nature, 
but it is critical to establish whether the widely used assays such 

vaccinated malaria-naïve individuals. However the association 
does not imply causality. Additional immune effector mecha-
nisms have been associated with PMR in CHMI including cyto-
kines and regulatory T cells.73 Unfortunately no other BS vaccine 
CHMI studies have directly examined the relationship between 
GIA and PMR. Spring and colleagues modeled PMR by a group 
method that does not yield values for individual volunteers, 
meaning correlations could not be assessed, although there was 
a trend to reduced PMR in vaccine groups with GIA activity.27 
By contrast, in another CHMI study of an AMA-1-containing 
multistage virosomal vaccine, there was no measurable activ-
ity by GIA, despite indications of blood-stage efficacy in one 
immunised individual,26 suggesting that either the blood-stage 
efficacy observed was mediated by a separate immune mecha-
nisms than antibody inhibitory activity, or that the GIA failed 
to predict potential efficacy. In a separate BS vaccine study, GIA 
was not performed, and the vaccine had no observed impact 
on PMR,71 despite later indications of possible limited strain-
specific effects in a phase IIb study.28 Overall, there is currently 
insufficient data from CHMI to conclusively determine the 
relationship between in vitro GIA and in vivo PMR, or the pre-
dictive power of GIA, although a promising indication warrants  
further investigation.

Going forward, CHMI may have significant potential in proof 
of concept studies to validate GIA and other functional assays, in 
contrast to field studies where problems of unexposed individu-
als and interfering antibodies (discussed above) confound the 
assessment of protection and its relationship to immune markers. 
Moreover, CHMIs in well-defined semi-immune adult popula-
tions97 may also shed light on the various contributions of func-
tional antibodies (and other immune effector mechanisms) to BS 
immunity.96

Table 2. Published blood-stage vaccine controlled human malaria infection (CHMI) studies

Reference 
(year)

N Vaccine Location CHMI
GIA  

(median)

Antibody 
conc. 

(mg/mL)

PMR 
(median)

Relationship 
to GIA

Efficacy

Ockenhouse 
1998107 35

NYVAC -Pf7  
(multi-stage)

WRAIR Spz ND - ND - Delay to patency

Lawrence, 
200071 17 Combination B QIMR BSP ND - NP - No

Thompson, 
200826 29

1. PEV3A  
(multi-stage) 

2. PEV3A + FP9/MVA 
ME-TRAP

CCVTM Spz None 30.0
1: 5.7 
2: 6.3 
C: 8.7

-

Reduced PMR 
Trend to reduced  

liver-emerging  
parasites

Spring, 
200927 22

1. AMA-1 + AS01B  
2. AMA-1 + AS02A

WRAIR Spz
1. 70% 
2. 77% 4.0

1. 14.5 
2. 13.9 
C. 16.8

ND

Trend to reduced PMR 
Significant reduc-

tion in liver-emerging 
parasites and decreased 

qPCR densities; no 
delay to patency

Duncan, 
201162 8

AMA-1/C1 + CPG 
7909

CCVTM BSP 63% 10.0
V: 17.5 
C: 17.6

Yes No
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as GIA are of value in predicting vaccine efficacy. To this end, 
GIA should be prospectively validated in standardized CHMI 
models to follow up on indications of a correlation with in vivo 
parasite multiplication rate.62 The kinetics of GIA activity could 
be better defined by prospective studies in endemic settings by 
controlling for exposure, and by studying kinetics in CHMI. 
Finally, field vaccine efficacy studies should endeavor to report 
GIA data to improve our understanding of the important rela-
tionship between efficacy and in vitro GIA.
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